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The Filtered Mode Tree

David J. Marchette1 and Edward J. Wegman2

The mode tree is a useful tool for visualizing the modal structure of a density.  Locations

of modes of the density are plotted as a function of the bandwidth used in the kernel estimate of

the density. Since the mode tree uses a single bandwidth in the kernel estimator, it exhibits all the

drawbacks that a single bandwidth kernel estimator has, particularly for densities with large tails

or differences in the scales of the modes. A modification is presented which uses the filtered ker-

nel estimator, a version of the kernel estimator which uses a small number of bandwidths. The two

mode trees are compared on some synthetic data, and on a data set from DNA flow cytometry.

Key Words: Bump hunting; Graphical methods; Kernel density estimation; Filtered kernel den-

sity estimation; Mode estimation; Multimodality.

1. Introduction

One of the first things one wants to know about a data set is how its distribution. For most

data, unlessa priori information leads us to a particular parametric family, a nonparametric esti-

mate of the density (often a histogram) is constructed. The next question, given a rough idea of

the shape of the density, is how much of the structure represents the underlying density and how

much is an artifact. For example, one wants to know how many modes there are, and where they

are.

This is difficult to assess from any single estimate, since the variability of the data and the

uncertainties inherent in nonparametric density estimation will sometimes hide modes due to
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oversmoothing and sometimes exhibit spurious modes due to undersmoothing. Often one makes a

series of plots using different assumptions and methods and then decides from the plots what

structure is supported by the data. Thus, good visualization tools are essential for density-based

data analysis.

Silverman (1981), gave a method for assessing the mode structure using kernel estimators,

and Minnotte and Scott (1993) used this approach to design a visualization technique to aid in the

assessment of these features. This approach will be discussed and an extension of it will be

described which makes the method more easily interpreted in certain situations.

Kernel estimators are well known and used extensively in nonparametric density estima-

tion and regression. Good introductory references are Silverman (1986) and Scott (1992). Given

iid data x1,...,xn, we construct the kernel estimator for the density as:

(1.1)

where K is the kernel, usually a density (in fact, in practice K is often the normal density). The

bandwidth, h, determines the amount of smoothing of the estimator and, hence, determines the

number of modes in the estimate. Silverman (1981) showed that the number of zeros of all deriv-

atives of the estimate (1.1) is monotone decreasing in h for the normal kernel. This fact will be

exploited to give a method of visualizing the modal structure of the density.

2. The Mode Tree

The kernel estimator thus gives a method for investigating the number of modes of a den-

sity: plot the density for a range of bandwidths h. As h decreases, new modes will appear and old

modes will remain (if the kernel is normal). Unfortunately, it is difficult to visualize all these dif-
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ferent plots simultaneously and it is with this in mind that the mode tree was invented.

The mode tree of Minnotte and Scott (1993) is a very simple and powerful idea: plot the

modes of the kernel estimator as the bandwidth h varies. As h decreases, new modes split off from

old modes, and this simple plot encapsulates all this information. More information can be added

to the basic mode tree, such as position of the antimodes and the magnitude of the density at the

mode as indicated in Minnotte and Scott’s paper.

Figures 1 and 2 illustrate the mode tree and point out a problem with the mode tree that

our new technique, to be described below, is designed to address. We have drawn 500 data points

from the mixture distribution .4 N(-5,.1) + .4 N(.5,.1) + .2 N(0,10) illustrated in Figure 1, with the

solid curve indicating the true distribution. Note that the histogram is oversmoothed and does not

pick out the two modes of the density. This oversmoothing is inevitable in a density with long

tails, such as this one, if one is to avoid “spiking” in the tails, i.e. as long as a single bin width his-

togram is used.
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Figure 1: Histogram of 500 data points drawn from .4 N(-0.5,.1) + .4 N(0.5,.1)
+ .2 N(0,10). True density is shown as a solid curve.
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This data could be thought of as an outlier contaminated data set, where the two modes in

the center are what are of interest and the long tails are due to contamination. We want to know

how many modes there are in this data.  Figure 2 shows the mode tree of Minnotte and Scott

applied to this data. Note that one must mentally ignore the outliers in order to see the central

Figure 2: Mode tree for the data in Figure 1.
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Figure 3: “Rescaled” mode tree for the data in Figure 1.
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modes. The problem is that the single bandwidth kernel estimator must undersmooth the tails and

hence generate a large number of modes in the tails before it can detect the extra structure in the

middle. The histogram in Figure 1 shows clearly that the tails are relatively long and that this will

be a problem. What we propose is a modification to the kernel estimator to incorporate this “mul-

tiscale” information.

Looking at the histogram, one might conservatively hypothesize that the data is a two

component mixture (outlier model) and fit this mixture to the data. In all the mixture fits we dis-

cuss, the EM algorithm (see for example Titterington et al (1985)) is used. The mixture fit is

approximately 0.8 N(0.03,0.4) + 0.2 N(-0.1,11.7). Imagine using the bandwidths appropriate to

the separate components of this mixture to rescale the mode tree. Deferring the details of how this

is to be accomplished for a moment, consider Figure 3. Now we clearly see the two modes, and

the “spurious” modes have all been de-weighted relative to the true modes. This graphic seems to

be much more easily interpreted than the one in Figure 2.

Consider the two mode trees together. There appears to be a correspondence between each

new mode in each tree, up to a point. In fact, the second tree appears to be a smooth distortion of

the first, as if we had pushed the mode up and the tails down. In a sense, this is precisely what has

happened. We now describe how this is accomplished.

3. The Filtered Kernel Estimator

We propose a modification of the kernel estimator which allows a small number of band-

widths to be used and gives a mechanism both for choosing these bandwidths and limiting their

scope along the support of the density. This allows us to weight the different modes according to

their estimated variance as illustrated in Figure 1.

Of course, many different methods have been proposed for constructing kernel estimators
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with separate bandwidths for each kernel (see Silverman (1985), Scott (1994), and Wand and

Jones (1995) for discussions of some of these). One of these methods could be used in place of the

kernel estimator in the mode tree. However, for data analysis and exploration, it would be desir-

able to have just a few bandwidths (for example: one for the tails and one for the mode) that can

be adjusted independently to examine the effect this has on the estimator. Thus we seek a method

for providing this kind of flexibility.

The technique is described in more detail and generality in Marchette et al (1994). We will

consider a specific case of the estimator here. In order to motivate this estimator, consider a nor-

mal outlier density:  p N(0,1) + (1-p) N(0,σ2). As σ becomes large, the single bandwidth kernel

estimator must either oversmooth the mode or undersmooth the tails. One would like to use a

large h in the tails and a smaller one near the mode. In some sense, we would like to choose the

one appropriate to the N(0,σ2) term in the tails, and the one appropriate to the N(0,1) term near

the mode. With this in mind, we define the filtered kernel estimator.

Let

(3.1)

be given (usually a mixture fit to the data), with

. (3.2)

With the above definition, we define the filter functions to be the posteriors of the mixture compo-

nents:
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. (3.3)

The filtered kernel estimator is then:

. (3.4)

In regions where one component of the mixture dominates, the inner sum reduces to approxi-

mately the single kernel with a bandwidth scaled by the component’s variance. This allows us to

have different effective bandwidths (one for each mixture components) in different regions of the

support, but without the added burden of choosing these extra bandwidths.

Of course, that last sentence is not quite true: we still have to choose the mixture model

(3.1). Quite a bit of work has been done in this arena (see for example Titterington et al 1985), but

it is by no means a solved problem. Experience has shown that the method is fairly robust to

choices of this mixture model and, moreover it is not required that the data actually be selected

according to a mixture model of this type. In fact, if it is known that the data is a mixture of a

known number of components, and if it is also known that our mixture estimate is a maximum

likelihood solution (rather big “ifs”), then the filtered kernel estimator is unnecessary.

It should be pointed out that the purpose of the filtering mixture is not really to get a good

estimate of the density, but rather to get the basic shape of the density without all the details. It is

the purpose of the mode tree to explore the details. Thus, as in Figure 1, we wish to obtain a con-

servative density estimate which will give a rough estimate of the local smoothness of the density.

As can be seen in (3.4) we do not have complete independence of the bandwidths in all
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regions. In regions of high overlap of the mixture components, we have a mixture of kernels at

each point, the mixture proportions being the posteriors of the components of the mixture. This is

probably what one wants, in most situations, but one could just as easily replace theρ’s in (3.4)

with characteristic functions for different regions of the support of the density, if one felt this was

necessary. We will not pursue these ideas here.

Our experience has been that one can obtain quite good estimators with conservative esti-

mates of the mixture density. Figure 4 is an example of what is meant here. The filtered kernel

estimator is drawn as a solid line while the filtering mixture is dotted. The dashed curve represents

the true density. This is the same data as in Figure 1. Even though the filtering mixture has under

estimated the number of components of the density, we still see a good estimate of the density in

the filtered kernel estimator. As with all kernel estimators, this one depends on the bandwidth h,

and in this case h was chosen to be “optimal” in the mean integrated squared error (MISE) sense,

under the assumption that the filtering mixture was the correct density. Better estimates could be

obtained, since the filtering mixture is not correct, however this illustrates how one might use the

Figure 4: The filtered kernel density estimator compared with the true distribution
and the filtering mixture.
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algorithm in practice.

The filtered kernel estimator can be made more general, and we briefly consider one possi-

ble generalization. Consider having a separate bandwidth for each component that is completely

user specified. With this we can hand-craft the estimator near the modes, to bring out the sub-

modal information of interest. The formula for this estimator is:

(3.5)

The kj are now explicitly separated from the variances of the components, and can be adjusted

independently until a reasonable fit to the data is achieved, something that is difficult to do with

the fully adaptive kernel estimator. In this case, once the kj’s have been fixed, h is varied just as in

the standard mode tree. This is of value when the filtering mixture is not thought to be a good esti-

mate of the data in its own right, or when exploratory data analysis is the intent. Other generaliza-

tions, including generalizing the filter functions, as mentioned briefly above, are possible, but will

not be considered here. We will use the version in (3.4) throughout the remainder of this paper.

The estimator in (3.5) is one of the reasons we choose not to go the route of the fully adap-

tive kernel estimator. It seems an advantage to have a small number of “local” tuning factors

which can be adjusted to give a better estimate of the data, given the limitations of our pilot esti-

mator (called the filtering mixture in the case of the filtered kernel estimator).

4. The Filtered Mode Tree

The modified mode tree is now simple to define: it is the standard mode tree with the ker-

nel estimator replaced by the filtered kernel estimator. This allows the local rescaling that we

desired, with only a “small” cost: fitting the filtering mixture.

The example above (Figure 1) shows the basic idea. As in the outlier model discussed in
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section 3, we wanted different bandwidths in different regions, but we were not yet willing to

make the commitment to more than two components. This also illustrates an important point: the

mixture fit need not be aimed at producing a good model of the density. The point of the mode

tree is to examine the modal structure of the density. One should be careful not to posit a particu-

lar structure in the mixture, and then look for evidence of this structure in the mode tree, unless

one is willing to do this for all the different possible structures.

Figure 3 gives another application of the filtered mode tree. We have drawn 500 data

points from another mixture distribution (.3 N(-.35,.1) + .3 N(.35,.1) + .2 N(1.8,.8) + .2 N(4,.8))

illustrated in Figure 5, with the solid curve indicating the true distribution.  Considering the figure

for a moment, one natural intuition about this density is that it has two main groupings (at differ-

ent scales) a left one and a right one, each of which is “split” into two “minor” modes. While one

could have a different view, it is clear that the left most modes are of a different character than the

right most ones and this seems a natural grouping.

The mode tree on this data is depicted in Figure 6. Note that it does pick out the two

Figure 5: A histogram, overlayed with the true distribution, of data from a 4 com-
ponent mixture:  .3 N(-.35,.1) + .3 N(.35,.1) + .2 N(1.8,.8) + .2 N(4,.8).
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modes on the right, but it is difficult to see from this plot whether there is evidence for more than

one mode on the left. The reason is that the bandwidth appropriate to detecting the modes on the

left greatly undersmooths the right half of the density. The true modes on the left are at the same

smoothing level as the spurious modes on the right. Thus, in order to interpret the mode tree for

the leftmost modes, one must focus attention on the appropriate area and mentally down-weight

the “spurious” modes. Of course, this assumes one has determined which modes are “spurious”.

This requires more information than is in this plot.

Note also that four of the modes at the right appear at approximately the same h value,

making it difficult, from the picture, to decide what the mode structure should be. Finally, the fig-

ure shows the mode at 2 splitting off from the left mode, which is contrary to our (admittedly

biased) intuition.  The problem once again is that the kernel estimator is using the same band-

width on the broad right as it is on the narrow left. In some sense, one would always want to use a

smaller bandwidth on the left than on the right.Once again a two component mixture is fit to the

data. This mixture is approximately 0.66 N(0.1,0.3) + 0.34 N(3.1,2.1). Using this as the filtering

mixture, Figure 7 shows the new, rescaled mode tree. Note that the two modes from the left

appear at a larger smoothing parameter, h. Note also that we still have “spurious” modes. Thus, no

information that was in the original mode tree is lost, it is just reformatted. In a sense we have

“leveled the playing field” of the two major modes so that they can be analyzed simultaneously,

without extra mental effort.

A nice feature of this example is that the mode at 2 has been linked as splitting off the

right-most mode in Figure 7 rather than the left-most mode as in Figure 6, which seems more

appropriate for this density.
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Looking at the histogram in Figure 5, it could be argued that there are three components,

one on the left and two on the right. So we now fit a 3 component mixture to the data. The filtered

mode tree is shown in Figure 8. This seems almost identical to the Figure 6, the standard mode
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Figure 6: The mode tree for the data in Figure 5.
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Figure 7: The filtered mode tree for the data in Figure 5.
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tree. What has happened? Recall that the filtered mode tree acts by scaling the kernel estimator

differently in different regions, as suggested by the filtering mixture. If the components of the fil-

tering mixture have roughly equal variance, the filtered kernel estimator reduces to the standard
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Figure 8: The mode tree for the data in Figure 5 using a three component mixture
for the filter.
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Figure 9: The mode tree for the data in Figure 5 using a four component mixture
for the filter.
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kernel estimator, and the mode trees are the same (up to a possible rescaling of the y-axis). In this

case the fitted mixture is approximately .67 N(0,.3) + .14 N(2,.4) + .19 N(4,.8). Thus, if the filter-

ing mixture has similar variances for all the components, no relative scaling is done and the fil-

tered mode tree reduces to the standard mode tree, since the filtered kernel estimator reduces to

the standard kernel estimator in this case.

Figure 9 shows what happens when we take the next step and fit a 4 component mixture to

the data. The estimated mixture is approximately .3 N(-.3,.12) + .3 N(.4,.13) + .2 N(1.9,.63) + .2

N(4.2,.78). We have a slightly larger range in the variances, and the mode tree in Figure 9 looks

closer to the one in Figure 7 and closer to our understanding of the data.

This example has pointed out that the gain in the filtered mode tree is fundamentally tied

to the difference in variances of the modes, as represented by the filtering mixture. Thus if the fil-

tering mixture does not have different variances in the different components the filtered mode tree

gives the same result as the standard mode tree. Note also that if the filtering mixture has vari-

ances which are not representative of the underlying structure, the filtered mode tree will give

misleading results.

5. Application

We now turn to a real data set. As discussed above, we are interested in data sets for which

the filtered mode tree can provide an improvement over the standard mode tree. For this we need

data with modes of distinctly different sizes, distributions with long tails, etc.

The data we consider is immunocytometry data. A flow cytometer, for the purposes of this

work, counts the amount of DNA in cells. Normal cells in an organism all have essentially the

same amount of DNA, except those that are preparing to divide, and those which have undergone

meiosis prior to sexual reproduction. Abnormal cells, those which have undergone some kind of
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genetic change (such as cancer cells) may in many situations have a different amount of DNA

from the norm for the organism. Thus by measuring the amount of DNA in a sample, one can in

principle determine if there are abnormal cells present.

The data consists of 20,000 counts, depicted in Figure 10. The usual method of analysis is

to histogram the data, as is done here, and measure the modes from the histogram. The fundamen-

tal questions in flow cytometry, then, are how many modes are there, where are they, and how big

are they?  The primary regions of interest in this data are the two main clumps of data, around 200

and 400. The overt structure of this data in these regions is apparent. The question is, is there

some substructure to these modes?

The standard mode tree is presented in Figure 11. Note that the outliers and noise between

the modes has hopelessly complicated the picture. One needs to compare the mode tree picture

Figure 10: Immunocytometry data.
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with the histogram in order to determine the structure in the regions where one is really interested

in the modal structure. One solution to this is to first remove all data not from the apparent modes.

The filtered kernel provides an alternative to this approach.

Figure 11: Standard mode tree for the immunocytometry data.
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Figure 12: Filtered mode tree for the immunocytometry data.
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We now fit a 5 component mixture to the data. The filtered mode tree is shown in Figure

12. Now we can clearly see the main modes, and the extra structure allowed by smaller band-

widths near the modes allows us to investigate the possibility that the modes indicated by the his-

togram might split into multiple modes. In order to get this amount of detail near the modes, the

standard histogram would have to increase the range of bandwidths used, which would greatly

increase the amount of noise from the tails and the between-mode region.

The filtered mode tree clearly indicates the two main modes of interest, and indicates a

small number of submodes that might be worth investigating. Consider particularly the two

modes at approximately 207 and 216. The standard mode tree becomes hopelessly cluttered

before the second mode becomes apparant, which shows clearly one of the strengths of the fil-

tered mode tree. However, this figure also indicates a problem with the filtered mode tree which

we did not see in the mode tree. Recall that for normal kernels the number of modes is monotonic

in h. The filtered kernel is effectively using a mixture of normals for its kernel (although it is

potentially a different mixture for each kernel) and so monotonicity is not guaranteed. Thus we

see the mode detected around 300 at about h=1 disappearing as h drops below 0.1. Whether this is

a problem sufficient to negate the other positive aspects of the filtered mode tree is a matter of

taste. We feel it is not. In regions where a single component of the filtering mixture dominates, the

filtered kernel estimator is using essentially normal kernels, and so this would be expected to be

less of a problem in these regions. Where the trouble comes in is where there is heavy overlap of

the filtering mixture components.

A question now arises as to whether the second mode near 200 indicated in the filtered

mode tree is real or not. The only practical way to investigate this is to parse the data into subsets.

Minnotte and Scott (1993) use the bandwidths indicated in the mode tree to test. As indicated in
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Figure 11, this mode is not present in the mode tree, without taking a much smaller value of h, and

hence producing far too many modes to test.

The data between 190 and 260 is shown in Figure 13. The mode is apparent in this picture,
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Figure 13: Histogram of immunocytometry data restricted to the range [190,260].
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Figure 14: Mode tree for the restricted immunocytometry data.
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and Figure 14 shows the standard mode tree on this restricted data. Note that the second mode

now shows up clearly and we can do a hypothesis test (as described in Minnotte and Scott, (1993),

see also Efron and Tibshirani (1993), pp 227-232) to see if this data is unimodal or bimodal.

Recall that the standard mode tree on the entire data set was unable to pick out this second mode.

The filtered mode tree was able to look deeper down the tree in regions which warranted the extra

depth. This indicates the regions which warrant further investigation, and the standard mode tree

can be used to obtain the bandwidths at which to perform the hypothesis test.

The estimatedp value for this second mode is .08, which gives us some confidence that it

is in fact a true mode of the distribution. This example illustrates the way the two different mode

trees can be used in concert to produce improved data analysis.  The detection of multiple peaks

in this region, refered to as aneuploid G1 peaks in the cytometry literature, is of great interest to

the pathologist (Schuette, et al. (1983).

6. Discussion

The filtered mode tree gives an alternative to the standard mode tree that allows selective

rescaling of the tree in regions of different variance. This can allow the user to better pick out the

underlying structure of the data. The filtered mode tree reduces to the standard mode tree when

the variances of the normal components are the same. It also elicits structure that the standard

mode tree might miss by virtue of having smaller bandwidths in regions in which the scale of the

data is small, thus improving the chance that fine detail will be elicited where it is warranted.

As always, when one adds parameters to be tweaked one invites abuse. It is always possi-

ble to use a filtering mixture tailored to finding spurious structure. For instance, if one used small

variance components in the tails, perhaps fit to outliers, these regions would be given undesired

weight in the mode tree, leading to incorrect analysis. It is important to justify the mixture approx-
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imation and to check for pathologies such as component variances being driven to zero, or com-

ponents in regions with little supporting data. It is advisable to be conservative in the choice of

mixtures used, unless very gooda priori information is available.

The filtered mode tree is an alternative to the mode tree, but is not meant to completely

supplant it. The mode tree has desirable properties.  However, it can be extremely hard to read in

certain situations, for example with data whose distribution has long tails, and it is these situations

that the filtered mode tree is designed to address. The use of the filtered mode tree to determine

which regions are of interest, followed by the standard mode tree in these regions, and combined

with hypothesis testing on those regions can give a powerful set of tools for determining the

modal structure of the data.

The filtered mode tree is certainly not the only approach. One could use any of a number

of variable bandwidth kernel estimators in place of the filtered kernel, however the ease of appli-

cation and the small number of parameters which need adjusting makes the filtered kernel estima-

tor, and hence the filtered mode tree, quite useful in many situations.
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