Betti Numbers of Graphs

David A. Johannsen David J. Marchette

Abstract

This paper describes an application of research that sits at the intersection of commutative algebra and combinatorics: Betti numbers of graphs. In particular, we describe a correspondence between simple undirected graphs and a class of ideals in a polynomial ring. We then briefly introduce some of the algebraic invariants that can be associated to the ideal and the relation of these invariants to the existence of induced subgraphs in the original graph. We discuss a novel application of the theory to a problem in anomaly detection – detection of a local non-homogeneity in a graph. We describe some variants of these ideas designed to make the computations more tractable.

1 Introduction

A graph is a pair $G = (V, E)$, where $V = V(G)$ is a finite set \{v_1, \ldots, v_n\}, the vertices, and $E = E(G)$ is a set of pairs of vertices, the edges. We will usually write vw for the edge \{v, w\}. We assume all graphs are simple: edges are pairs of distinct vertices; there are no edges from a vertex to itself. The number of vertices of a graph is called the order of the graph. The number of edges is called the size.

An induced subgraph of a set of vertices $W = \{v_1, \ldots, v_k\}$ is the graph (W, E'), where E' is the subset of E consisting of those pairs containing only elements of W: $E' = \{w_iw_j \in E | w_i, w_j \in W\}$. Thus, the induced subgraph contains all the edges between its vertices that exist in the original graph.

A cycle is a set of distinct vertices $\{v_{i_1}, \ldots, v_{i_k}\}$ with $i_k > 2$, such that $\{v_{i_1}v_{i_2}, v_{i_2}v_{i_3}, \ldots, v_{i_k}v_{i_1}\} \in E$. We will also refer to the corresponding graph as a cycle, and denote it C_n. A cycle has a chord if the subgraph induced by the vertices of the cycle has an edge between two non-adjacent vertices (non-adjacent as members of the cycle). The complete graph K_n is the graph on n vertices such that $uv \in E(K_n)$ for all $u \neq v \in V(K_n)$. The complete bipartite graph on n, m vertices is the graph for on the disjoint union of two sets ($V = X \cup Y$), where $|X| = n$ and $|Y| = m$, with all possible edges between the sets ($E = \{xy | x \in X \text{ and } y \in Y\}$). We denote the graph as $K_{n,m}$.

Definition 1.1. A graph is chordal if all induced cycles have at least one chord.

Definition 1.2. The open neighborhood of a vertex v, denoted $N(v)$, is the set of vertices $\{w \in V | vw \in E\}$. That is, it consists of all neighbors of v. Note that
The closed neighborhood of \(v \), denoted \(N[v] \) is the set \(N(v) \cup \{v\} \).

Definition 1.3. The trivial graph is the graph with no edges; \(E = \emptyset \).

Definition 1.4. Given a graph \(G \), define \(\text{star}(G) \) to be the graph defined by adding a single vertex \(v \) to \(G \), with edges from \(v \) to each vertex of \(G \). We will denote by \(\text{star}(n) \) the star on the trivial graph on \(n \) vertices. Thus \(\text{star}(n) = K_{1,n} \) has order \(n + 1 \) and contains one vertex of degree \(n \) and \(n \) vertices of degree 1.

Definition 1.5. A vertex \(v \) is simplicial if \(N(v) = K_n \) for some \(n \).

2 Commutative Algebra

Suppose we have a graph \(G \) on \(n \) vertices \(\{v_1, \ldots, v_n\} \). Let \(k \) be a field (we may assume for the purposes of this paper that \(k = \mathbb{C} \)). Let \(S = k[x_1, \ldots, x_n] \), the ring of polynomials in \(n \) variables with coefficients in \(k \). Our notation for edges, \(v_iv_j \) is evocative of monomials, and we make use of this observation in the definition of the edge ideal of a graph.

Definition 2.1. The edge ideal of \(G \) is the ideal of \(S \) generated by the monomials \(\{x_i x_j \mid v_iv_j \in E\} \). We write \(I(G) \) for the edge ideal of \(G \).

Although there is a one-to-one correspondence between the vertices \(v_i \) and the variables \(x_i \), we will keep to the usual naming convention so that it is clear when we are referring to elements of the graph and when we are referring to elements of the ring. For more information on edge ideals see [1], [2], [3], [4], [5].

We can now use the tools of commutative and algebraic geometry to learn about a graph by studying its edge ideal. One such tool, the one we will be focused on in this paper, is the minimal free resolution.

Definition 2.2. An augmented free resolution of an \(S \)-module \(M \) is an exact sequence of the form

\[
0 \longrightarrow F_m \longrightarrow F_{m-1} \longrightarrow \cdots \longrightarrow F_1 \longrightarrow F_0 \longrightarrow M \longrightarrow 0
\]

where each \(F_i \) is a free \(S \)-module (a direct sum of \(\beta_i \) copies of \(S \)). The image of \(F_i \) in the sequence is called the \(i \)-th syzygy module. Such a resolution is minimal if \(m \) is minimal over all such, and each \(\beta_i \) is minimal. We define the minimal free resolution of the edge ideal to be the minimal free resolution of \(I = I(G) \), in which case the free resolution becomes:

\[
0 \longrightarrow S^{\beta_m} \xrightarrow{\phi_m} S^{\beta_{m-1}} \xrightarrow{\phi_{m-1}} \cdots \xrightarrow{\phi_2} S^{\beta_1} \xrightarrow{\phi_1} S^{\beta_0} \xrightarrow{\phi_0} I \longrightarrow 0.
\]

The \(\beta_i \) are called the Betti numbers. The length of the resolution is \(m \).

It is well known that minimal free resolutions always exist, and are unique up to isomorphism. Thus, the length of the minimal free resolution of an edge ideal is well defined.
Definition 2.3. The projective dimension of an edge ideal is the length of the minimal resolution.

Note that $\beta_0 = \text{size}(G)$. There is a natural \mathbb{N}^n grading on the ring $k[x_1, \ldots, x_n]$, which gives a natural grading on the resolution.

\[
0 \longrightarrow \bigoplus_j S(-j)^{\beta_{m,j}} \longrightarrow \cdots \longrightarrow \bigoplus_j S(-j)^{\beta_{1,j}} \longrightarrow \bigoplus_j S(-j)^{\beta_{0,j}} \longrightarrow I \longrightarrow 0,
\]

where $S(-j)$ is the shifted module obtained by shifting the degrees by j, so that the corresponding maps remain degree 0. We will be concerned with methods for computing the graded Betti numbers $\beta_{i,j}$.

3 Splitting

Definition 3.1. An edge uv is a splitting edge if $N[u] \subseteq N[v]$ or $N[v] \subset N[u]$.

If uv is a splitting edge, we will assume that the vertices are ordered so that $N[u] \subset N[v]$.

Theorem 3.1 ([6]). If uv is a splitting edge of G, then for all $i \geq 1$ and $j \geq 0$

\[
\beta_{i,j}(I(G)) = \beta_{i,j}(I(G \setminus \{uv\})) + \sum_{k=1}^{i} \binom{n}{k} \beta_{i-1-k,j-2-k}(I(H)),
\]

where $n = |N[v]| - 2$, $H = G \setminus N[v]$, $\beta_{-1,0} = 1$ and $\beta_{-1,j} = 0$ for $j > 0$. Recall that we are using the convention that uv is ordered so that $N[u] \subset N[v]$.

Proof. See [6].

Lemma 3.1. A graph G has the property that all (non-trivial) induced subgraphs H contain a splitting edge if and only if G is chordal. Here “non-trivial” refers to the condition that H contain at least one edge.

Proof. (\Rightarrow) Assume G is not chordal. Then there is an induced cycle C_n with $n > 3$ with no chord. But it is easy to see that any such cycle does not have a splitting edge.

(\Leftarrow) If G is chordal, then it contains a simplicial vertex u. Since $N(u)$ is a clique, uv is a splitting edge for any $v \in N(u)$. Since any induced subgraph of a chordal graph is chordal, we have the result.

Lemma 3.2. For any chordal graph G there is a splitting edge e such that $G \setminus \{e\}$ is chordal. In fact, any edge incident on a simplicial vertex may be chosen for e.

Proof. The only way removing an edge from G can make it non-chordal is if it opens up an induced C_4 with no chord. So in particular, we want to avoid removing chords. Let v be a simplicial vertex. Any edge e incident to v is a
splitting edge. Further, it is not the chord of any cycle external to \(N[v]\). Since \(N[v]\) is complete, removing \(e\) cannot result in an induced cycle without a chord. Thus, any edge incident to a simplicial vertex can be removed.

We call a function \(s\) that takes a graph containing splitting edges and returns one splitting edge a splitting edge selection strategy, or simply a strategy. We will say that Equation (1) is recursive for a class of graphs if there is a strategy for which it is recursive. We do not require that any arbitrary strategy will work, only that there is at least one. The following theorem has been stated elsewhere (see [7]), but is usually stated without explicit proof.

Theorem 3.2. Under the strategy which selects splitting edges incident on simplicial vertices, Equation (1) is recursive for a graph \(G\) if and only if \(G\) is chordal.

Proof. This is immediate from the two lemmas and the fact that induced subgraphs of chordal graphs are chordal.

This shows that the algorithm to apply Equation (1) recursively always works to compute the minimal resolution of \(G\) whenever \(G\) is chordal, provided the splitting edges are chosen appropriately. It is not the case, though, that it is recursive no matter what splitting edge is chosen at each step. The simplest example of this is shown below. It is clear that all edges in this graph are splitting and that this is a chordal graph. Further, if we remove any edge from the outside cycle, the resulting graph is chordal. However, if we remove the diagonal, the resulting graph is not chordal, and furthermore, does not contain any splitting edges. The two degree two vertices are simplicial, while the vertices on which the diagonal are incident are not.

The graph above is a specific case of a general class of graphs, \(\{G = \text{star(star(n))}\}\), for \(n > 1\), shown in Figure 1. \(G\) is not chordal. In fact there are a number of copies of \(C_4\) in \(G\). Note that every edge in \(\text{star(star(n))}\) is splitting. However, all edges are not equal. If we choose \(uv\), then \(G \setminus uv\) contains no splitting edges, and Equation (1) fails to recurse. However, if we select any other edge (\(uv_i\) or \(vv_j\)) and continue to select such edges until only \(uv\) remains, Equation (1) recurses. At each step, \(H\) is the empty graph, since \(N[u] = N[v] = V(G)\).

The strategy that works is to use a perfect vertex elimination scheme ([8] also called a perfect (vertex) elimination ordering (PEO) ([9]). This is an ordering of the vertices such that each vertex is simplicial in the graph induced by the remaining vertices. If one uses the strategy of selecting edges incident on vertices in a PEO, the algorithm recurses.

Now consider the graph in Figure 1 with the edge \(uv\) removed: \(K = G \setminus \{uv\}\) (we will call this a mace (or a mace head) because of its similarity to the head of a type of mace; see below).
None of the edges is splitting, so we cannot even start the recursion. However, as we have noted, there is a strategy for using Equation (1) reflexively on \(G \). Thus, we can turn Equation (1) around and recursively compute the Betti numbers for \(K \) using those of \(G \):

\[
\beta_{i,j}(I(K)) = \beta_{i,j}(I(K \cup \{uv\})) - \sum_{k=1}^{i} \binom{n}{k} \beta_{i-1-k,j-2-k}(I(H)).
\]

(2)

Thus, if an edge \(uv \) is missing from a graph, but would be splitting if added to the graph, we can use Equation (2). We will say that we “add a splitting edge” when we mean an edge which is splitting in the resultant graph. Note that the subgraph \(H \) is computed on the augmented graph \(K \cup \{uv\} \) using \(N[v] \subset V(K \cup \{uv\}) \). In computing the first summand of the right hand side, we need not select \(uv \) as the splitting edge (and in fact we must not, since this would bring us back to our starting point). Instead, for the equation to be recursive, the addition of \(uv \) must induce other edges to be splitting in the resultant graph. This is the case in our example of \(K = \text{star(star}(n)) \setminus \{uv\} \). If the resultant graph is chordal, then our PEO strategy will select the appropriate edges, and we can recurse to the solution.

Thus if adding a splitting edge results in a chordal graph, then we can recurse. Similarly, if there is a sequence of splitting edges we can add for which the final graph is chordal, then we can recurse. Note that algorithms that produce PEOs on chordal graphs can be modified (if necessary) to produce partial PEOs: a set of vertices each of which is simplicial in the graph induced by the vertices in the rest of the list plus all vertices not in the list. If the graph is non-chordal (and contains at least one simplicial vertex), we can apply our recursion to this
partial PEO until we have processed all the splitting edges. Other methods must be employed to compute the Betti numbers for the remaining subgraphs. At this point, one could attempt to apply Equation (2). It is unclear, from a practical standpoint, whether it is better to employ Equation (2) up front, on the original graph, or only once we hit the end of the partial PEO.

There are three ways to add a splitting edge to a graph: one can connect an isolated vertex, resulting in a pendant; one can connect a pendant, resulting in a triangle; one can add a diagonal to a square (4-cycle). The first two don’t change the “chordal status” of the graph: they cannot make a non-chordal graph chordal. The third requires that one of the vertices of the square have the property that its neighborhood is contained in the neighborhood of its opposite. Thinking of the mace head depicted in Figure 1 (with the edge uv removed), the vertex can be the “point” of the mace, resulting in the added splitting edge being uv. Note that this vertex is not simplicial, even after adding the edge, and so the added edge will not be selected by the algorithm until all the other edges of the mace have been selected. Note that we could have added $v_i v_j$ for any $i \neq j$, but this would not have resulted in a chordal graph (we would have to add many such edges). Thus, the strategy is to select splitting edges which make the graph “most chordal”: fill in the maximum number of squares.

4 Approximations

The above algorithm works if and only if the graph is chordal. If it is not, then at some point in the recursion a graph is reached which has no splitting edges. At this point, one has three choices: push the graph off to a non-recursive algorithm, for example by a call to the symbolic algebra package Singular ([10]) or other algebraic geometry software; give up and fail to return any answer; use some method to approximate the Betti numbers so that what is returned is approximately correct (in some sense) rather than simply failing to return anything. In this section we discuss one method of approximation well suited to the recursive algorithm.

Given that the graph contains no splitting edges, theorem 3.2 cannot apply, as it only applies to splitting edges. It is possible, however, that if we chose a non-splitting edge, that the recursion would still be valid. It is easy to design a graph for which this will not work no matter which edge is chosen, however it is also known that in some cases choosing a non-splitting edge will still satisfy the recursion and result in the correct minimal free resolution. This is the basis of the approximate algorithm we have implemented.

1. While a splitting edge exists, proceed as according to the splitting edge algorithm above.

2. If no splitting edge exists, choose an edge to use in place of the splitting edge. This choice may be made:

 (a) At random.
(b) So that the graph $G \setminus e$ with the edge removed contains the largest number of splitting edges (ties broken arbitrarily, and if no edge results in a subgraph with any splitting edges, choose the edge arbitrarily or at random).

3. Proceed as if the chosen edge were splitting.

5 Scan Statistics

Another approach to processing large graphs is to give up on the goal of producing a minimal free resolution of the entire graph, and instead consider the resolutions of subgraphs. One could cluster the graph, reducing to a graph defined by the clusters, but instead we consider scan statistics.

For each vertex v, define the scan subgraph $s(G, v)$ to be the induced subgraph of the closed neighborhood of v. We then define the scan MFR of G to be the collection of MFRs of all scan subgraphs of v. We can then define the scan statistic of the Betti numbers to be the maximum across all scan MFR's:

$$\beta_{ij}^s = \max_v \beta_{ij}(s(G, v)).$$ \hfill (3)

6 Anomaly Detection

We now consider the problem of detecting an anomaly in a graph. In this case we define “anomaly” to mean a small region (set of vertices) in the graph which have a greater number of communications amongst them than is “typical” in the remainder of the graph. We make this precise in the following.

The Erdős-Rényi random graph ER(n, p) is the random graph on n vertices whose edges are present independently with probability p. The $\kappa(n, p, m, q)$ random graph is a model for a graph with an anomaly: a small subset of vertices “communicating” amongst themselves at a higher rate. Here there are two disjoint sets of vertices, $V = \mathcal{K} \cup \mathcal{E}$, with an edge between vertices i and j independently with probability:

- p if either of $i, j \in \mathcal{K}$.
- q if both $i, j \in \mathcal{E}$.

It is our hypothesis that the Betti numbers, and in particular the scan MFR, can provide statistics for detecting this type of anomaly with higher power than other approaches. Note that the size of the graph is already known to have some power for detecting this type of anomaly ([11, 12, 13, 14]). It is reasonable, given that the Betti numbers essentially count the number of certain subgraphs, that they would have power superior to size, and perhaps other commonly used invariants, for problems of this type. To investigate this hypothesis, we present some simulations in the next section.
7 Examples and Simulation

Figure 2 shows a well-known graph called the Petersen graph. It’s MFR is depicted in Figure 3. Here we display the Betti numbers as a curve in the upper panel, with two data images below. In these, the values of the total (top) and graded (bottom) Betti numbers are depicted as gray-scale squares, with small values in black, large values in increasing whiteness. Zero graded Betti numbers are completely white. The numerical values are depicted in the squares. For large graphs with very large Betti numbers, we drop the numerical values from the plot.

We illustrate the timing improvement of the recursive algorithm over the algorithm in \textit{Singular} in Table 1. For each order, we randomly generated 100 chordal graphs, and computed the time to calculate the MFR using each of the two algorithms. As can be seen, the recursive algorithm on these random chordal graphs is vastly faster than the algorithm in \textit{Singular}, particularly for graphs of order 15. Figures 4 and 5 show timings of the recursive algorithm on larger graphs, both random chordal graphs and Erdős-Renyí random graphs. In the latter, \textit{Singular} is called for those graphs that have no splitting edges, but these are typically small enough in these simulations that there is not an excessive time cost as a result.

Figure 6 shows the percent difference between the true Betti numbers and approximate Betti numbers for 1000 ER(20,.1) graphs.

Figures 7 and 8 show the scan MFR for homogeneous (ER) and inhomogeneous (κ) graphs. As one can see from the figures, the Betti numbers tend to be higher for the inhomogenous graph, indicating that these are likely to be useful for detecting this type of inhomogeneity. Since each graded Betti number corresponds to a count of the number of subgraphs of certain types, it is possible, at least in principle, to use Betti numbers to design tests to detect very specific types of deviation from homogeneity. This is a subject for future work.
Figure 3: The minimal free resolution of the Petersen graph.

Table 1: Timings (in seconds) for the chordal algorithm as compared to Singular on a selection of chordal graphs.

<table>
<thead>
<tr>
<th>Recursive Algorithm</th>
<th>n</th>
<th>Minimum</th>
<th>1st Quartile</th>
<th>Median</th>
<th>Mean</th>
<th>3rd Quartile</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
<td>0.011</td>
<td>0.017</td>
<td>0.022</td>
<td>0.022</td>
<td>0.028</td>
<td>0.037</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>0.014</td>
<td>0.021</td>
<td>0.028</td>
<td>0.029</td>
<td>0.035</td>
<td>0.051</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>0.016</td>
<td>0.029</td>
<td>0.040</td>
<td>0.040</td>
<td>0.048</td>
<td>0.073</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>0.015</td>
<td>0.029</td>
<td>0.048</td>
<td>0.048</td>
<td>0.064</td>
<td>0.098</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>0.019</td>
<td>0.041</td>
<td>0.063</td>
<td>0.063</td>
<td>0.081</td>
<td>0.124</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.023</td>
<td>0.060</td>
<td>0.087</td>
<td>0.084</td>
<td>0.110</td>
<td>0.159</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Singular</th>
<th>n</th>
<th>Minimum</th>
<th>1st Quartile</th>
<th>Median</th>
<th>Mean</th>
<th>3rd Quartile</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
<td>0.014</td>
<td>0.032</td>
<td>0.070</td>
<td>0.102</td>
<td>0.12</td>
<td>0.415</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>0.014</td>
<td>0.05625</td>
<td>0.188</td>
<td>0.368</td>
<td>0.52</td>
<td>1.848</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>0.023</td>
<td>0.2333</td>
<td>1.154</td>
<td>1.875</td>
<td>2.84</td>
<td>7.816</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>0.024</td>
<td>0.417</td>
<td>3.084</td>
<td>6.999</td>
<td>11.5</td>
<td>42.42</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>0.038</td>
<td>3.646</td>
<td>25.86</td>
<td>52.09</td>
<td>74.97</td>
<td>275.4</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.090</td>
<td>40.86</td>
<td>174.1</td>
<td>320.5</td>
<td>476.4</td>
<td>1450</td>
</tr>
</tbody>
</table>
Figure 4: Timings for random chordal graphs.

Figure 5: Timings for Erdős-Rényi random graphs.
Figure 6: Percent difference between true Betti numbers and approximate Betti numbers using the approximation discussed in the text.

Figure 7: Scan statistic for an ER(100, 0.1) graph. The logarithm of the values of the graded Betti numbers are displayed to better show the structure.
Figure 8: Scan statistic for a $\kappa(100, 0.1, 10, 0.8)$ graph. The logarithm of the values of the graded Betti numbers are displayed to better show the structure.

Figure 9: Powers for the true Betti numbers (top), approximate Betti numbers (middle) and scan Betti numbers (bottom) for a simulation from ER(50, 0.05) versus $\kappa(50, 0.05, 6, 0.8)$. Yellow corresponds to high power, red to low, white to power ≤ 0.1. Here $\alpha = 0.05$. Here the upper left corner corresponds to the power of the size of the graph, $\beta_{1,1}$.

12
8 Conclusion

We have discussed the proof of Hà and Van Tuyl’s theorem that Equation (1) is recursive on chordal graphs, and used this, with the notion of a perfect elimination ordering (PEO) to provide an explicit strategy for applying this theorem. A trivial observation allows us to apply the same algorithm to slightly more general graphs than chordal graphs.

More generally, the idea of using a partial PEO can reduce the computation of the Betti numbers of an edge ideal in large graphs to that of computations on smaller graphs. This, combined with “filling in the squares” and other algorithms, or with specific formulas for different classes of graphs, can make the calculation of the Betti numbers of relatively large graphs practical.

We have also discussed ways to approximate the Betti numbers for graphs that are not chordal, and to compute related statistics, the scan MFR, which can be computed relatively efficiently for many graphs using these algorithms. We demonstrated empirically that some of the Betti numbers have high power for detecting certain types of anomalies (non-homogeneities) in graphs. Much work is still needed to develop the theory of the scan MFR, and to explore applications of the Betti numbers of graphs.

Acknowledgments

This work was funded in part by the Office of Naval Research under the In-House Laboratory Independent Research program.

References

